Absence of Diffusively Free Radical Cation Intermediates in Reactions of β -(Phosphatoxy)alkyl Radicals

Seung-Yong Choi,[‡] David Crich,^{*,†} John H. Horner,[‡] Xianhai Huang,[†] Felix N. Martinez,[‡] Martin Newcomb,^{*,‡} Donald J. Wink,[†] and Qingwei Yao[†]

Department of Chemistry, University of Illinois at Chicago 845 West Taylor Street, Chicago, Illinois 60607-7061 Department of Chemistry, Wayne State University Detroit, Michigan 48202

Received October 7, 1997

The chemistry of β -(phosphatoxy)alkyl radicals (or β -phosphate ester radicals) is a subject of considerable interest.¹ They are intermediates in the degradation of DNA effected by hydroxyl radical in DNA footprinting studies,² γ -irradiation,³ and antitumor agents such as the iron-bleomycin complex⁴ and the enediyne antibiotics.⁵ Typical reactions of these radicals are elimination of phosphoric acid, as in DNA-degrading reactions, substitution, and phosphate migration (Figure 1). Much of this chemistry can be explained by invoking an initial heterolytic fragmentation into radical cations and phosphate anions.^{1,6} Alternatively, concerted elimination of phosphoric acid and bimolecular nucleophilic substitution were found to be low-energy pathways in computational studies by Zipse,⁷ and a combination of concerted [1,2] and [3,2] shifts has been implicated for migration reactions in low-polarity media.8

Considerable circumstantial evidence supports the heterolytic fragmentation hypothesis, but most studies of β -(phosphatoxy)alkyl radicals did not provide direct evidence for formation of radical cations; for example, early kinetic studies of eliminations involved time-resolved conductivity measurements of phosphoric acid formation,9 and a recent ESR study detected an allylic radical elimination product.¹⁰ Electron-donating groups accelerate phosphate eliminations,⁹ but this does not preclude concerted processes which should have some polar character. The most compelling evidence for heterolytic fragmentations are product studies where isomeric β -(phosphatoxy)alkyl radicals gave the same mixture of substitution products¹¹ and photochemical studies in which CIDNP signals were observed;¹² both require freely diffusing radical cations.

[†] University of Illinois.

(1) Beckwith, A. L. J.; Crich, D.; Duggan, P. J.; Yao, Q. Chem. Rev. 1997, 97, in press.

(2) Pogozelski, W. K.; Mcneese, T. J.; Tullius, T. D. J. Am. Chem. Soc. **1995**, *117*, 6428–6433.

(3) von Sonntag, C. The Chemical Basis of Radiation Biology; Taylor & Francis: London, 1987.

(5) Christner, D. F.; Frank, B. L.; Kozarich, J. W.; Stubbe, J.; Golik, J.; Doyle, T. W.; Rosenberg, I. E.; Krishnan, B. J. Am. Chem. Soc. 1992, 114, 8763–8767. Hangeland, J. J.; De voss, J. J.; Heath, J. A.; Townsend, C. A.; Ding, W.-d.; Ashcroft, J. S.; Ellestad, G. A. J. Am. Chem. Soc. 1992, 114, 9200-9202.

(6) See Chapter 7 in ref 3.

- (7) Zipse, H. J. Am. Chem. Soc., 1994, 116, 10773-10774. Zipse, H. J.
 Am. Chem. Soc. 1997, 119, 2889-2893.
 (8) Crich, D.; Yao, Q.; Filzen, G. F. J. Am. Chem. Soc. 1995, 117, 11455-
- 11470. Crich, D.; Jiao, X. Y. J. Am. Chem. Soc. 1996, 118, 6666-6670.
- (9) Behrens, G.; Koltzenburg, G.; Ritter, A.; Schulte-Frohlinde, D. Int. J. Radiat. Biol. 1978, 33, 163–171. Koltzenburg, G.; Behrens, G.; Schulte-Frohlinde, D. J. Am. Chem. Soc. 1982, 104, 7311–7312.
- (10) Peukert, S.; Batra, R.; Giese, B. Tetrahedron Lett. 1997, 38, 3507-
- 3510. (11) Peukert, S.; Giese, B. Tetrahedron Lett. 1996, 37, 4365-4368.
- (12) Gugger, A.; Batra, R.; Rzadek, P.; Rist, G.; Giese, B. J. Am. Chem.
- Soc. 1997, 119, 8740-8741.

Figure 1. Reactions of β -(phosphatoxy)alkyl radicals.

We report here laser flash photolysis (LFP) and product studies of β -(phosphatoxy)alkyl radicals 1 and 2, produced from the

corresponding PTOC esters,¹³ which demonstrate the diversity of reaction pathways for these species. Specifically, we report examples of each type of reaction in Figure 1 which occur without formation of diffusively free radical cation intermediates.

Radical 1 rearranged mainly to the benzylic radical 3 as

determined by the UV spectrum that grew in with time (Figure 2A, Supporting Information). A weak absorbance at ca. 320 nm resembles those of other benzylic radicals.¹⁴ One possible product, radical cation 4, was excluded because styrene radical cations have a strong λ_{max} at ca. 350 nm and another strong absorbance in the visible region.¹⁵ Another putative product, allyl radical 5, was prepared independently from two precursors and displayed a strong absorbance at 305 nm but no peak at 320 nm

(14) Chatgilialoglu, C. In Handbook of Organic Photochemistry; Scaiano,

[‡] Wayne State University.

⁽⁴⁾ Stubbe, J.; Kozarich, J. W. Chem. Rev. 1987, 87, 1107-1136.

⁽¹³⁾ The acronym PTOC is from pyridine-2-thioneoxycarbonyl. Synthetic **1985**, *41*, 3901–3924. LFP applications: Bohne, C.; Boch, R.; Scaiano, J. C. J. Org. Chem. **1990**, *55*, 5414–5418. Ha, C.; Horner, J. H.; Newcomb, M.; Varick, T. R.; Arnold, B. R.; Lusztyk, J. J. Org. Chem. **1993**, *58*, 1194– 1198.

J. C., Ed.; CRC Press: Boca Raton, FL, 1989; Vol. 2, pp 3–11. (15) Johnston, L. J.; Schepp, N. P. J. Am. Chem. Soc. 1993, 115, 6564– 6571

Table 1. Rate Constants for Reactions of Radicals 1 and 2

	solvent	Arrhenius function ^a	$k_{\rm obs}~({\rm s}^{-1})^b$
1	benzene		1.2×10^{6}
1	THF	$(10.9 \pm 0.3) - (6.2 \pm 0.5)/\theta$	1.5×10^{6}
1D	THF		1.5×10^{6}
1	CH ₃ CN	$(11.0 \pm 0.5) - (5.0 \pm 0.7)/\theta$	1.8×10^{7}
1D	CH ₃ CN	$(11.0 \pm 0.3) - (5.0 \pm 0.4)/\theta$	$1.8 \times 10^{7 c}$
2	hexane		$< 1 \times 10^{4 d_{e}}$
2	benzene		$2 \times 10^{4 e}$
2	THF	$(13 \pm 1) - (11 \pm 1)/\theta$	$3.4 \times 10^{4 e}$
2	CH ₃ CN	$(11.6 \pm 0.3) - (8.0 \pm 0.4)/\theta$	5.2×10^{5}
2D	CH ₃ CN	$(12.4 \pm 0.5) - (9.0 \pm 0.7)/\theta$	5.0×10^{5}
2	CH ₃ CN/H ₂ O ^f		3×10^{6}

^{*a*} Listed errors in activation parameters are at 2σ ; $\theta = 2.3RT$ (kcal/mol). ^{*b*} Observed rate constant at 20 ± 1 °C unless stated; errors are <10%. ^{*c*} 18 °C. ^{*d*} 50 °C. ^{*e*} Maximum value; when $k_{obs} < 1 \times 10^5$ s⁻¹, the kinetic value contains a component from radical–radical and radical–oxygen reactions. ^{*f*} Acetonitrile–water, 1:1 (v:v).

(Figure 2B). Radical 5 could only be a minor product from 1 (<10%) on the basis of the signal intensity observed at 305 nm.

The kinetics of rearrangement of **1** (Table 1) were strictly firstorder and preclude dissociation to phosphate anion and radical cation followed by bimolecular recombination. The reaction was accelerated by an increased solvent dielectric constant¹⁶ as expected for a reaction occurring with a polarized transition state. The log *A* values of 11 are similar to those found in migration reactions of related β -acetoxy radicals which are believed to be concerted.¹⁷ The ΔS^{\ddagger} value of -3 to -5 eu is not consistent with the positive ΔS^{\ddagger} expected¹⁸ for heterolysis or rapid equilibration to an ion pair followed by rate-limiting recombination.¹⁹ The deuterated analogue **1D** displayed no kinetic isotope effect. A concerted migration mechanism for **1** agrees with previous mechanistic studies.⁸

When radical **1** was studied in THF in the presence of 1-octanol,¹⁶ the rate constant for formation of benzylic radical products (i.e., the sum of all rate constants) accelerated with a first-order dependence on octanol concentration. The new reaction was a *bimolecular* nucleophilic substitution of alcohol on **1**, giving radical **6**, a radical analogue of an S_N2' reaction (see Figure 1) that has not been observed previously but was predicted.⁷ The rate constant at 20 °C was $2 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$. Octyl ether **7** was obtained in 60% yield from a preparative-scale reaction of **1** in 1-octanol containing *t*-BuSH.

Radical **2** displayed another reaction. Time-resolved spectra in benzene, THF, acetonitrile, and acetonitrile/water (1:1) showed the formation of the allyllic radical **8** and a benzylic radical which we assume is radical **9** from a migration reaction. Spectra of products from **2** and **2D** (Figure 2C,D) are superpositions of the spectrum of radical **8** (Figure 2E) and another absorbance in the region of 320 nm. Difference spectra obtained by normalizing

 λ_{max} in the spectrum of **8** to that from **2** and subtraction show the underlying benzylic radical signal (Figure 2F). We estimate that the radical **9** predominates over **8** for the 0.1-ms time course of the LFP experiments, but it is possible that **9** eventually channels through radical **8** in secondary reactions. Preparative-scale reactions conducted in the presence of thiol gave coupling product **10** and its isomers and trapping product **11** in 64% and 13% yields, respectively.

LFP kinetic studies of radical **2** were conducted in several solvents (Table 1). Again, the kinetics were strictly first-order precluding fragmentation to radical cations and phosphate anions that subsequently reacted bimolecularly. Radicals **8** and **9** are produced in reactions that are quite closely related or are formed from a single process involving a bifurcation after the rate-limiting step because the ratios of **8**:**9** estimated from time-resolved spectra were the same in THF at 19 °C and in acetonitrile at 20 and 43 °C (**8**:**9** = 40:60). Further, the deuterated analogue **2D** reacted with about the same overall rate constants as found for **2** but gave a slightly different product distribution (**8**:**9** = 30:70 in THF at 20 °C). That is, an isotope effect was observed in the product-forming step but not the rate-limiting step.

The reactions of radical **2** are complex but show all the hallmarks of concerted processes. Diffusively free radical cations are excluded by the absence of second-order kinetic behavior and the absence of a radical cation UV spectrum. The log *A* values of 12-13 and the relatively small kinetic response to changes in solvent dielectric constant suggest a modestly polarized, concerted transition state as opposed to a highly polarized transition state expected for initial fragmentation to a radical cation—anion pair that subsequently reacts before diffusional escape.²⁰

Diffusively free cation radicals are excluded as first-formed intermediates in reactions of **1** and **2**, but fragmentation to a radical cation—phosphate anion pair that reacts "instantly" on the nanosecond time scale remains as a possible reaction course. Multiple heterolytic and concerted reactions of β -(phosphatoxy)-alkyl radicals are possible, but it is clear that the reactions of these species are poorly characterized. The phosphate migration reaction has only been known for a few years.²¹ The present work has demonstrated a bimolecular nucleophilic substitution reaction and implicated a concerted [1,3]-elimination reaction, neither of which were previously known even if computationally predicted.⁷ Given the importance of β -phosphate radicals in DNA degradation by anticancer agents, one expects that other methods will be brought to bear on the mechanisms of their reactions.

Acknowledgment. We thank the National Science Foundation (CHE-9614968 to M.N.) and the National Institutes of Health (CA-60500 to D.C.) for financial support.

Supporting Information Available: Experimental procedures for preparation of the precusors for 1 and 2, preparative reactions, and LFP experiments, X-ray structural data for 10, and Figure 2 (15 pages). See any current masthead page for ordering and Internet access instructions.

JA973512V

⁽¹⁶⁾ Dielectric constants: hexane, 1.88; benzene, 2.27; THF, 7.58; acetonitrile, 35.9; water, 78.4; 1-octanol, 10.3. See: Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents Physical Properties and Methods of Purification, 4th ed.; Wiley: New York, 1986.

⁽¹⁷⁾ Barclay, L. R. C.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 1984, 106, 1793-1796.

⁽¹⁸⁾ Benson, S. W. *Thermochemical Kinetics*, 2nd ed.; Wiley: New York, 1976.

⁽¹⁹⁾ For a prior equilibrium followed by a rate-limiting reaction, the overall log *A* term is the sum of the log *A* values of the elementary reactions. For a dissociation–recombination equilibrium followed by a rate-limiting recombination or abstraction step, log A_{obs} will be approximately equal to log *A* of the initial dissociative step, i.e. log $A \approx 15$ would be expected for the cases discussed here.

⁽²⁰⁾ Swain, C. G.; Swain, M. S.; Powell, A. L.; Alunni, S. J. Am. Chem. Soc. **1983**, 105, 502–513.

⁽²¹⁾ Crich, D.; Yao, Q. J. Am. Chem. Soc. **1993**, 115, 1165–1166. Koch, A.; Giese, B. Helv. Chim. Acta **1993**, 76, 1687–1701.